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The documentation and program developed for the
advanced structural geometry studies will be
made available to the public through COSMIC.
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The Technology Utilization Division of NASA,
designed to enlarge the return on the public invest-
ment in aeronautical and space activities, was the

first government agency to participate formally.
_In July 1968 the Atomic Energy Commission and in
November 1968 the Department of Defense joined in
the COSMIC endeavor. With the addition of these two

major agencies, the original concept of making tax-
paid developments available to the public was expanded
to make COSMIC a transfer point between and within

government agencies as well.

Requests for documentation or information concerning
this program should be directed to:

COSMIC
The University of Georgia
Barrow Hall
Athens, Georgia 30601

REF: HQN-10677

I-i



I.I INTRODUCTION

One of the most economical structural systems in

cohtemporary use has been based on the spherical form.

Designs for such structures are influenced primarily

by the ultimate purpose of the structure, spacial

environment to which it will be subjected, and the

materials of fabrication.

Two basic systems are used for subdividing the

spherical form for structural application: The bi-polar

system and the multi-polar system. Figures I.I, 1.2.

I

!

I

i I

Bi-polar System

Figure I.I

Multi-polar System

Figure 1.2
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The bi-polar system is related to the familiar

latitude-longitude approach to subdividing a sphere. Two

commonexamples of this system are the ribbed dome (Figure-

1.3) and the lamella dome (Figure 1.4).

Ribbed Dome

Figure 1.3
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The multi-polar system is related to the spherical form

of polyhedra. Perhaps the most familiar example of this

system is the geodesic dome discoverd by R. Buckminster

Fuller. Figure 1.5

Geodesic Dome

Figure 1.5



A typical design problem with the bi-polar system is

with the geometrical relationships of the frame configura-

tion. Computer aids in the design investigation may be

initiated to handle the great number of variables in the

determination of lengths, frequency of members, total

number of joints, number of members intersectinq at a

single joint, relationship of members to each other, etc.

This portion of the report will concern itself with

a mathematical and computer model for determining the

geometrical properties of the multi-polar system for sub-

dividing a spherical form for structural applications. The

model has been limited to the three polyhedral forms made

up completely of regular triangles: the tetrachedron,

octahedron and icosahedron.
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1.2 POLYHEDRON

Hoppe, in 1882, coined the word polytope: a geo-

metrical figure bounded by portions of lines, planes, or

hyperplanes; in two dimensions it is a polygon; in three a

polyhedron.* However, the Greeks studied polyhedra over

two thousand years ago with the findings of Euclid. Others

such as Klein, Schi_fli and Coxeter, introduced much to the

study and concepts of the polytope. In this section of

the report: the structural configurations discussed are

based on several of the polyhedral forms, specifically the

regular (Platonic) polyhedra; the Tetrahedron, Octahedron,

and Icosahedron.

In Euclid's writings, The Elements, explanation and

definition is give to the f_ve regular solids as known

to the ancient world. The convex polyhedra are said to

be regular if each have regular and egual faces, if they

are congruent, and if they are of regular polyhedral angles.

Table I.I list the properties of the Tetrahedron, Octahedron,

and Icosahedron which are considered as three of the five

regular polyhedral forms.

*Coxeter, N. S. M. 1
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Vertices

Table 1 .I

Properties of the Basic Polyhedra
Tetrahedron, Octahedron, Icosahedron

3
Tetrahedron 3

V=4, F=4, E=6

Dihedral angle# = 2 sin_/3 = 70 ° 31' 44"

Angle subtended by an
edge at center of
polyhedron 8= cos(- I/3) = 109°28'16 ''

(llV_, llY_, llV_) (liVe,-llVT,-11v_)
(-li#_, iI_, -iI_) (-iI_, -llJ-%, llJ-_)

I/_ O .57735Center to mid edge

center to center of face

center to vertex

edge

mid edge to center of face

mid edge to vertex

mid edge to opposite mid edge

height (vertex to center of
opposite face)

area of face

vol ume

I/3 0.33333

1 1

2_IJ-3 1 .63299

_/-{/3 0.47140

1 .41421

2/_/-3 1.15470

4/3 1 .33333

2/_ 1.15470

0.51320
27

T-8



Vertices

Table 1 .I (cont.)

4
Octahedron 3

V=6, F:8, E=I2

Dihedral Angle/3= tan 2_/2-= 109 ° 28' 16"

Angle substended by
an edge at center
of polyhedron 8=90 °

(-+I, o, o)

(o, -+l, o)

(o, o, -+I)

edge

center to vertex 1

center to mid edge I/v/2

center to center of
face I/_

Mid edge to near
vertex _3/2

Mid edge to distant
vertex F 5/2

area of face v_ /2

Volume 4/3

1.41421

1

0.70711

0.57735

1.22474

1.58114

0.86603

1.33333
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Table 1 .I (cont.)
5

Icosahedron 3

V=I2, F=20, E=30
2/2

_1

Dihedral angle 6= _ -(I sin ) = 138o11,22 ''

Angle subtended by
an edge at center of
polyhedron 6= cos (f5-/5 ) = 63o26 '05.818''

Vertices : 1 +v/-5 - = 1.61803
2

1 = T- 1
T

2
m = -_ + 1

md/-5-= T + 2

1 f4 11
5 J 5

51/4/-_ - 51/4

_+ ,/7- , _+ 1
51/4 51/4V/T

o)
edge

center to vertex

center to mid edge

center to center of
face

area of face

volume

114
2/5

1

i/4

31_5114d-_

I/_vi3/5

I 4)(4(5 1 d_)13

1.05146

1

0.85065

o.79465

0.47873

2.53615
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1.3 STRUCTURAL ORIENTATION

The structural configuration desired is acquired

through a three-way gridding of the faces of the polyhedral

form chosen from one of the three trianqular faced regular

polyhedra. The grid is then tY.:islated onto the surface

of a circumscribed sphere. A three dimensional rectangular

coordinate system was chosen for the basis of the compu-

tations. Due to the symmetries existing in the polyhedral

forms only one face of the polyhedron is used in calculation

of the geometrical properties of the structure. Figure

1.6 shows the orientation of the polyhedral form with

respect to the x, y, z axis with the vertices of the face

chosen for the geometrical computations. The intersection

of the x, y, z axis is located at the origin (0,0,0) of

the polyhedron, this point being the center of the cir-

cumscribed sphere. Table 1.2 list the coordinates of the

vertices of the faces chosen as the PPT.

Z

5 z

\,

Y

P3

Octahedron

Figure 1 .6
Tetrahedron
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I

Icosahedron

Figure 1.6 (cont.)

Table 1.2

Coordinates of the Principal Polyhedral Triangles

P_ = (-l/d-3-,-lldT, lid-3-)

P2 = (lld-%, -IIdY, -lld3)

P3 : (-lld_, lld_, -lld_)

nl : (l, o, o)

P2 : (o, I, o)

P3 : (o, o, I)

Tetrahedron

= (-.57735027,-.57735027, .57735027)

= (.57735027,-.57735027,-.57735027)

= (-.57735027, .57735027,-.57735027)

0ctahedron

Icosahedron
1

= , d_-) = (0, .85065081, .52573111)P1 ( 0 ,d-_-I5114 115 14

P2 = (I/51/4_ 0' _/T/51/4) - (.52573111, 0, .85065081)

P3 = (_-/51/4 1/51/4v/-_- , 0) = (.85065081 52573111 O)

t

L .,
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Throughout the discussion of the methods of sub-

division of the polyhedral forms the Icosahedron will be

used with examples of computer maps of the spherical forms

derived using the three traditional orientations: edge,

vertex, and face. Figure 1.7.

Edge Orientation

Fi qure 1 . 7
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Vertex Orientation

Figure 1.7 (cont.)
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Face Orientation

__(_o_./_'_
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1.4 DEFINITIONS

AXIAL ANGLE (_) = an angle formed by an element and a

radius from the center of the polyhedron meeting in a

common point and the vertex of the axial angle sharing

a vertex of the polyhedron.

CENTRAL ANGLE (6) = an angle formed by two radii of the

polyhedron passing through the end points of a principal

side.

CHORD FACTOR (cf) = the element lengths calculated based

upon a radius of a non-dimensional unit 1 for the

spherical form. The length of any element for larger

structures may be found by the equation:

cf x r = 1

where cf = chord facto_

r = the radius of the desired
structural forms

1 = the length of the element
sought

DIHEDRAL ANGLE (8) = an angle formed by two planes meeting

in a common line. The planes themselves are the faces

of the dihedral angle, and the common line is the element.

To measure the dihedral angle measure the angle whose

vertex is on the element of the dihedral angle and whose

sides are perpendicular to the element and lie one in

each face of the dihedral angle.

1-16



FACE ANGLE (_) - an angle formed by two elements meeting

in a common point and lying in a plane that is one of

the faces of the polyhedron.

FACES = the triangles making up the "exploded" structural

form.

FREQUENCY (_) = the number of parts or segments into which

a principle side is subdivided.

PRINCIPLE POLYHEDRAL TRIANGLE (PPT) = any one of the equal

equilaterial triangles which forms the face of the

regular Polyhedron.

PRINCIPLE SIDE (PS) = any one of the three sides of the

principle polyhedral triangle.

1-17



1.5 METHODS OF SUBDIVISION

Upon using the spherical form as a structural unit,

it is readily apparent that the basic polyhedral form,

in its pure state, can not satisfy the range of conditions

that must be geometrically and structurally met. Seven

methods will be discussed for reducing the basic poly-

hedral form into a larger number of components from which

the geometrical properties may be made to remain within the

structural fabrication and erection limits for a desired

configuration.

Due to the symmetrical characteristics of the basic

polyhedral form only one face of the polyhedron is used

for calculating the geometrical properties of the struc-

tural configuration. The remaining faces may be found by

rotations or reflections of the principal polyhedral tri-

angle and its transformations.

Attention is given here to the seven methods of sub-

dividina the PPT in a broad sense and will be treated in

detail in the following section.

Method 1 :

The PPT is subdivided into n frequency, with the parts

chosen as equal divisions along the three principal sides.

Figure 1.8
A

i | ! J I

NOTE: A1 =

Figure 1.8

12
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Each point of subdivision is then connected with a

line segment parallel to their respective sides thereby

giving a three-way grid so that a series of equilateral

triangles are formed. Figure 1.9

I A

B

Figure 1 .9

Note: AB is parallel to 12

Each vertex on the PPT is then translated along a line

passing through the origin (0,0,0) of the polyhedron and

its respective vertex, onto the surface of the circumscribed

sphere. The element connecting the translated vertices form

the chords of a three-way great circular grid. Fiqure I.I0

( o,o,o )

Figure I.I0

P3

P_
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Methods 2 & 3:

The PPT is subdivided into n frequency with the parts

therein as equal arc divisions of the central angles of

the polyhedron. Figure I.II.

A

2

B

(o,o,o)

Figure I.II

Note: A-i- # I_

The points of subdivision on each principal side of

the PPT are connected with line segments parallel to their

respective sides. Each line segment intersects at a number

of points which define a qrid of subdivision. Due to the

method of subdivision, small equilateral trianqular "windows"

occur in the grid. Figure 1.12.

I A

b Q

B

Figure 1.12

NOTE: A--B is parallel
to 12

Aa _ ab

Windows are equilateral
triangles
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The center of these "windows" are found by one of two

methods and are used as the vertices of the three-way grid

for the PPT. They are then translated onto the surface of

the circumscribed sphere along a line passing through the

respective vertex and the origin (0,0,0) of the polyhedron.

The element connecting the translated vertices form the

chords of a three-way great circular grid. Figure 1.13.

(0,0,0

Figure 1.13

1-21



Method 4:

The PPT is subdivided into n frequency, with the parts

chosen as equal divisions along the three principal sides.

Figure 1.14.

No te : A--I = I--2

Figure 1.14

Each point of subdivisions is then connected with line

segments perpendicular to their respective principal side

thus giving a three-way grid comprised of equilateral and

right triangles. Fiqure 1.15.

2 A

Note: A-B _L 1 2

Figure 1 .15
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Each vertex on the PPT is then translated onto the

surface of the circumscribed sphere along a line passing

through the respective vertex and the origin (0,0,0) of

the polyhedron. The elements connecting the translated

vertex form the chords of a three-way great circular grid.

Figure 1.16

/
/

/
/

/
/

I

/
I

I

( o,o,o )

Figure 1.16
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Method 5

The PPT is subdivided into n frequency with the parts

chosen as equal arc divisions of the central angle of the

polyhedron. Figure 1.17.

B

( 0,0,0 )

NOTE: AT _ I--2

Figure 1.17

The points of subdivision on each principal side of the

PPT are connected with line segments similar to Method 4.

However, the line segments are not perpendicular to their

respective sides. Upon completion of the connections a

grid is created. Due to the method of subdivision, small

triangular "windows" occur in the grid. Figure 1.18.

fI i >

> >

Figure 1.18

NOTE: A-B-/_T2

Small triangular
windows occur
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The centers of these "windows" are found and are used

as the vertices ef a three-way grid for the PPT. The ver-

tices are then translated onto the surface of the circum-

scribed sphere along a line passing through the respective

vertex and the origin (0,0,0) of the polyhedron. The

elements joining the translated vertices form the chords

Of a three-way great circle grid. Figure 1.19.

PI

/
/

/
/

/
/

/

P2

I

( 0,0,0 )

Figure 1.19
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Method 6:

The PPT may be described as six right triangles each

being a reflection or rotation of the other. Fiqure 1.20.

A B

Note: ABC is
a right
triangle

Fiqure 1.20

In this method of subdivision we shall treat only triangle

ABC. The remaining section of the PPT may be found through

rotations and reflections of this basic unit. The Line AB

is subdivided into parts chosen as equal arc divisions of

the central angle of the polyhedron. Figure 1.21.

No te : A--I _ I--2

A

0 B

(o,o,o)

Figure 1.21
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Once the subdivisions are found they are used to find

the points of division on side A-C and C--B. Perpendiculars

through the points of division on side A--B are extended to

side AC, this giving the points of subdivision on side

AC. Figure 1.22.

1 2 3 4 5

Note: 2_IA-B

A1 _ 23

Figure 1 .22

The points of division on the side CB were formed by

extending a line through the points of subdivision on

side AC perpindicular to side C_. Figure 1 .23.

C

4

3

2

1

B

Note: 54 _J_ CB

12 # 34

Fiqure 1.23
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Having acquired the points of subdivision along the

three sides of the triangle, diagonals are drawn from each

point on side A-Cto alternate points of sides A--Band B--C.

Figure 1.24.

A

C

B

Figure 1.24

To complete the three-way qrid connect alternate

points of subdivision of side A--@to alternate points of

division of side B--C. Figure 1.25

C

Figure 1.25
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Through rotations and reflections of the basic unit

and its subdivisions, the entire three-way gridding of the

PPT may be found. Figure 1.26

J

J

J

J

J

J

A-
B

Figure 1.26

The vertices of the three-way grid are then trans-

lated to the surface of the circumscribed sphere along a

line passing through the respective vertex and the origin

(0,0,0) of the polyhedron. The element joining the trans-

lated vertices form the chords of a three-way great circle

grid. Figure 1.27.
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!

( 0,0,0 )

Figure 1.27
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Method 7

The PPT is described as six right triangles each

being a reflection or rotation of the other. Figure 1.28.

3 triangle

A
B

Figure 1.28

In this method of subdivision only one of the right

triangles will be treated as the basic unit for subdivision

into a three-way grid. The line AC is subdivided into parts

chosen as equal arc division of an angle made up of the triangle

AC and the origin of the polyhedron with the origin (0,0,0)

bieng the center of the triangle of subdivision. Figure 1.29

1

2

3

o
(o,o,o) c

NOTE: A1 # 23

oc _L _-C

Figure 1 .29
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Once the subdivisions are found on line AC they are

used to find the points of division on side AB and CB. The

lines through the points of sibudvision on side AC are taken

perpendicular to side _-B, this giving the points of division

on side A--B. Figure 1.30.

C

1 2 3 4 $

Note: 2--5 _I_ AB

12 _ 34

Figure 1.30

The points of division on CB are found by extending a

line through the points of subdivision on AC perpendicular

to CB. Figure 1.31.

C

A

Note: 5__LC_

12 # 54

Figure 1.31
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Having acquired the points of subdivision along the

three sides of the triangle, diagonals are drawn from each

point on AC to alternate points on AB and BC. Figure 1.32.

Figure 1 .32

To complete the three-way grid connect alternate points

on AB to alternate points on BC. Figure 1.33.

C

A B

Figure 1.33
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Through rotations and reflections of the basic unit

found and it's subdivison, the entire three-way grid of

the PPT may be found. Figure 1.34.

J

J_J

J_J

J_
J_J

A-

_J

Figure 1.34

The vertices of the three-way grid are then translated

to the surface of the circumscribed sphere along a line

passing through the respective vertex and the origin (0,0,0)

of the polyhedron. The elements joining the translated ver-

tices form the chords of a three-way great circle grid.

Figure 1.35.
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P_

/
/

/

/
/

/
/

( o,o.o )

Figure 1.35
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1.6 METHOD 1

The mathematical and computer model was developed

for subdividing a tetrahedron, octahedron, or an icosahedron

circumscribed by a unit sphere. The icosahedron was chosen

as an example to illustrate the geometry of the model.

The icosahedron is oriented in a three dimensional

rectangul_r coordinate, system so that the vertices of one

PPT are:

(X1' YI' Z1)

(X2' Y2' Z2)

: (o, d-T , I )

= (0, .850651, .525731)

:( 1 , o, dT-_ )

= (.525731, O, .850651)

o)

(.850651, .525731, O)

= 1 +d5-where

2

with the intersection of the axis X, Y, Z located at the

origin (0,0,0) of the icosahedron. Figure 1.36.

I136



(X2,Y2,Z 2)

Figure 1.36

This PPT is divided into smaller equilateral triangles

where the vertices of the triangles are of the form

X2 - Xl X3 - X 2 Y2 - Y1 Y3 - Y2X I + I + J Y1 + I + a

N N N N

Z2 - ZI Z3 - Z2 \ I.I
Zl + I + J )N N

where N is the frequency of the structure and I and J are

integers such that O<J<I<N. The values of I and J are unique

for each vertex and are used to identify each vertex as shown

in Figure 1.37.
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( N,N-! ) •

(N

(N,1)

A _/-

o_

V( o,o )

Figure 1.37
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To find the projection of each vertex of the PPT

onto the unit sphere along a line segment through the vertex

of the PPT and the origin each coordinate of each vertex,

PPT, is divided by the distance between the vertex PPT and

the origin. Figure 1.38.

(X 1,Yl,Z z )

r k(X 2'Y2'z 2)

(0,0,0) (X3,Y 3,Z 3 )

Figure 1.38
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Using the coordinates, this program finds the lengths

of the elements of the structure (_), the angle between pairs

of elements (face angle _), the angle between the elements

and a radius from the origin to an endpoint of the element

(axial angle _), and the angle between adjacent faces of the

structure (dihedral angle 8). Figure 1.39

(XI,YI,ZI)

( 0,0,0

'"Z

,Y2,z2)

/

/
) 3'Y3'Z3)

Figure 1.39

To find the angle between elements the face _ _, we use

the coordinates of their endpoints. The vertex of the angle

is a common endpoint to each element and is translated to the

origin. The other two endpoints Pl and P2 are translated in

the same manner. Letting (Xl, Y_, Zl) and (X2, Y2, Z2) be

the points resulting from the translations of the endpoints

P1 and P2 ,

1-40



COS _ =

where dl =

and d2 =

XlX 2 + Y1Y2 + Z1Z

dld2

/_2 2 2+ Y + Z 11 I

x_X 2 2 22 + Y2 + Z 2

1.2

is the desired angle.

To find axial angles the above method is used except

that the vertex is established at one end of an element and the

origin is used with the other endpoint to define the angle.

The desired angle is _.

The angle between two adjacent faces, the dihedral C _,

is found using

cos 8 = A1A 2 +BIB 2 + ClC 2

2 2 2 2 2 2

A1 + B1 + C1 A2 + B2 + C2 1.3

where

is the desired angle.

AIX + BIY + ClZ + DI = 0 defines the plane containing

one face and A2X + B2Y + C2Z + D2 = 0 defines the plane con-

taining the other face.

The negative sign is used because the obtuse angle is desired.

The A, B, and C fcr each plane are computed as

Y1 Zl 1

A = Y2 Z2 1

Y3 Z3 1

1-41



X1 Z1 1

= X2 Z2 1

X3 Z 3 1

1.4

X1 Y1 1
C = X2 Y2 1

X3 Y_ 1

where (Xl, YI, Z1)' (X2' Y2' Z2)' and (X 3 , Y3, Z3) lie in

the plane. In particular the three vertices of each face

are used. For the special case where the two faces used lie

above separate faces of the polyhedron, the assumption is

made that the plane containing the element common to each

face and the origin bisects the angle. This angle is found

in the same manner and doubled. This method is used because

the structural face above the polyhedral face is not generated

properly.

The length of the elements, _, are found by using the

general equation

_ p )2 + (p p )2 + (pzl _ pz z )2= Px I x 2 yl Y2
1.5

is the desired length.

To reduce total output, this program takes into account

certain symmetries and outputs only a part of the total angles

and lengths. The rest of the values are the same as at least

one outputed value and can easily be found using the following

symmetries. Figure 1.40.
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(N,N) (N,N-1)
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Figure 1.40
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FACE ANGLES

For every face angle opening directly towards (or

away from) the point (0,0), there are equal angles opening

towards (or away from) the point (N,O) and (N,N). For

example, the angle (l,l), (0,0), (l,O) with vertex at (0,0)

is equal to the angle (N-l,O), (N,O), (N,l) and the angle

(N,N-I), (N,N), (N,l, N-l). Thus, only the face angles

facing directly towards or away from (0,0) are computed.

If the vertex is to lie at (I,J), the angle will be either

(I + I, J + l), (I,J), (I +l, J) or (I-l, J-l), (I,J),

(I-I,J). Also, only the face angles falling on the right

of or on a line passing through (Xi, Yi, Zi,) and the mid-

point of the opposite side are computed.

The elements of the structure can be put into one-to-

one correspondence with the lengths and dihedral angles.

The dihedral angle associated with an element is the angle

between the two faces containing the element. For each

element, there are two axial angles, one at each end, but

since the element is a cord of the circle, the two angles

are equal and may be considered one. In this case, we

have a one-to-one correspondence between elements and axial

angles. This program will only compute values around

elements parallel to the side opposite (X i, Yi, Zi) and on

the right side of a line through (X i, Yi' Z1) and the

midpoint of the opposite side. All other lengths and angles

are symmetric to one of the lengths and angles computed in

this manner.
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1.7 METHODS 2 & 3

This program works with a tetrahedron, octahedron,

or icosahedron circumscribed by a unit sphere. The icosa-

hedron was chosen as an example to illustrate the qeometry

of the program. The icosahedron is oriented in a three

dimensional rectanqular coordinate system so that the

vertices of one PPT are

(x_, y_, z ) = (o, _ , I )

= (0, .850651, .525731)

z) = ( l(x2' Y2' 2
, O, v/_-T )

(.525731, O, .850651)

(x3' Y3' z3) = ( _ , 1 , O)

(850651, .525731, O)

where T = 1 +v_-

with the intersections of the axis X, Y, Z, located at

the origin (0,0,0) of the icosahedron, Figure 1 .43.
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Z

X2,Y2 ,Z2

X

I
Figure 1.43

This PPT is divided into smaller triangluar units which

are translated onto the surface of a sphere constituting

the desirable space form.

Using the following formula the planes consisting of

the edqes of the PPT and the origin (XI, YI, ZI) (X2, Y2, Z2)

(X3' Y3' Z3) are rotated from 3-space into 2-space, Figure

1.44.
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x

Figure 1.44

X' = %1 x + _1 y + Ul z 1.6

y' = _2x + u2y + _ z
2

Z' = X3X + P3W + _3 z

Where x, _, u are direction cosines of the X -axis, and Y'-axis,

and Z'-axis respectively with respect to the old axis and

are found by:
// 2 2 2

%1 = Xl/_ Xl + Yl + Z 1

V 2 2 2
Pl = Yl Xl + Yl + Zl

// 2 2 2

= /_/ + Z_)1 Zl Xl + Yl 1

X 2 , X3; !J2,P3; and_2,_3 are found similarly.
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The edge of the PPT is subdivided into units by the

following method, Figures 1.45 and 1.46.

FIND: the angle _ contained within the rotated triangle

consisting of PIP 2, and the origin with the vertex located

at the origin.

= Arctan (Py2) r 1.7

Px 2

where r = 1 and is considered constant

Y

• P2

x

Figure 1.45

THEN: subdivide the angle _ into N angles e

e = _ T
N

Where T = Increment 1 to N

Y

_ X° t

Figure 1 .46

1.8
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a c Iy = I

a 2 c2

Rotate the points of intersection along the PPT edge from

2-spaces back to 3-spaces.

X = _i x' + pl.y _ + _1 z

y = _2 x' + _2y' + v2Z

X I + I +
z = _3 u3Y v3 z

1 .II

where,, p, v, are direction cosines of the X'-axis, Y'-axis,

and Z'-axis with respect to the old axis and are found:

/x 2 2 2_-1 = Xl 1 + v1 + Zl

//xPl = Yl 12 + Yl + Zl

/X 2 2 2Vl= Zl 1 + Yl + Zl

_2, _3; P2, P3; and _2, v3 are found similarly.

Retain the co-ordinates along the edges Sl, S 2 and S 3 as

shown in Figure 1.47.
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1 2 3 4 N

N-- = ; $3 = _N

3 3

2 2

Figure 1.47

After findinq the unit measurements along the edges of

the PPT, they are connected through a grid determining a

smaller grid network. Since the units alonq the PPT edge

are not equal, the gridding will create "windows" The

centers of these "windows" must be found to establish the

final 3-way grid network. Fiqure 1 .48.

P2 P4

Figure 1.48
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The gridding and windows are found by the following

method: From the coordinates along the edges of Sl, S2

and $3, calculate coordinates of the window by finding the

intersection of Pz P2 with P-3--P-4 and P1 P2 with

PsT6 and P3 P4 with Ps-_G by using the two point form of

the equation of a line in three-space for the three lines

and solve simultaneously for the points of intersection.

PIP2 is: x - x I Y -Yl z - z I 1.12

X2- Xl Y2- Yl Z2- Zl

P-_4 is: x - x 3 Y " ,Y3 z - z 3

X4- X3 Y_+-Y3 z4- z3

PsP6 is: x - x s Y -Y5 z - z s

x6-x5 Y6-Ys z6- Zs

To find the intersection of PIP2 with P3P4 the equation

takes the following form:

(I) PIP2 is: x(y2-yl) + y(xl-x 2 ) = Yl(Xl-X2) + x1(Y2_Yl)

(2) PIP2 is: y(z2-zl) + z(y2-y I ) = zl(Yl-Y2) + yl(z2_zl )

(3) P3P4

(4) P3P_

is: x(y4-Y3) + Y(x3-x4 ) : Y1(X3-X 4) + xl(y4-y3)

is: y(z4-z3) + z(y3-y 4 ) = z3(Y3,y4) + y3(z4_z3 )
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For PI_2 let: (y2-yl) : a I

(Xl-X2) = b I

yl(x1_x2 ) + x1(y2-yl) = c

For P--_4 let: (y4-y3) = a 2

(x3-x4) = b 2

y1(x3-x4) + xI(Y4-Y 3) : c 2

using the formula I,I0 solve for x and y coordinates of

the intersections of P-_2 with P--_-4"

Find the z coordinate:

For P--_2 let: (Z2-ZI) = al

(yl-Y2) = b 1

Zl(Yl-y 2) + yl(z2-z3) = c I

For P--_4 let: (z4-z3) : a2

(y_-y4) = b 2

z3(y3-y 4) + y3(z4-z3) = c 2

The other two vertices of the window are found in a similar

manner. Once the coordinates for the vertices of the window

are determined, its center is found by one of the following

two methods:

METHOD I:

On the PPT Plane the windows appear as equilateral

triangles with vertices P1(xiYlZl) , P2(x2Y2Z2 )'

p_(x3y3z3) as shown in Figure 1.49.
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P

P!

"x

Figure 1.49

The center C(cx,cy,cz) is found with the following

formula:

CX = Xz+ x2+ x 3 1.13

3

CY = y1+ y2 + Y3

3

CZ = zz+ z2+ z

3

METHOD II:

The coordinates of the window found on the surface

of the PPT are first "exploded" to the surface of

the sphere. The center of the exploded window is

then found by the intersection of angle bisectors.

To find the projection of each vertex of the window
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onto the unit sphere, translate each vertex along

a line throuqh the vertex of the PpT and the origin;

each coordinate of each vertex, PPT, is divided by

the distance between the vertex PPT and the origin,

Figure 1.50.

Y

-X

z

Figure 1.50
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2 2 2

d = x I + Yl + zl where d = distance 1 .14
from origin to P

l
where r = radius of
the sphere to be ex-
ploded upon and is
considered constant

r = 1

X ' 1 -- rx
1

d

y ' = ry 11 .

d

1 .15

z' = rz
1 1

Translate "window" with vertice P3 at the origin, Figure 1 .51.

P2 T

Figure 1.51
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P1Tx P1 P3X X
1 .16

PiTy = Ply P3y

PIT z PI P3
Z Z

P2Tx P2 x P3 x

: - P3
P2Ty P2x x

P2Tz P2 z P3 z

P3Ty , P3P3Txl' t Tzl
= 0

Rotate plane PI, P2, P3 so that PIP3 will fall on the X-axis

and P3 is at the origin using equation 1.6

The center is found with the intersection of two angle

bisectors of the triangular window PIP2P3, Figure 1.52.

Y

x

Z

Figure 1.52
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The angles _ and _ are found:

Arctan

Arctan

Y
2

X
2

Y2

X 1 -X 2

= -,f

= 6

1 .17

rotate P2 about P3 toward P1, 1/2 Y degrees

x 4 = x 2 cos 1/2 Y + Y2 sin 1/2 y

Y4 = Y2 cos 1/2 y - x 2 sin I/2 y

1 .18

locate the origin at PI' then rotate P2 about Pl toward

P3 I/2 _ degrees

x s = (x2-xl) c0sl/2 8- Y2 sin 1/2 a + x I 1.19

Y5 = Y2 cos I/2 a + (x 2- Xl) sin I/2

thus defining PIP s and P3P4

With P3 at the origin formula 1.9 may be used to solve

for the intersection of line P3P4, PIPs findinq center C.

Rotate C back to three space using formula I.II Then

translate center C back to three space ("C" is located in

the previously "exploded" window), figure 1.53.

C'x = Cx + P3 x

C'y = Cy + P3Y

C'z = Cz + P z
3

1 .20
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P1 P2

C'

P3 T
P2

P3 T

Fiqure 1.53

For Method I or Method II, the centers found are

"exploded" to the surface of the sphere using formula

1.14 and formula 1.15

Using the coordinates, this program finds the lengths

of the elements of the structure (_), the anqle between

pairs of elements (face angle _), the angle between the

elements and a radius from the origin to an endpoint of

the element (axial angle _), and the angle between adjacent

faces of the structure (dihedral angle _), Figure 1.54.
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Figure 1.54

To find the angle between elements the face } m, we

use the coordinates of their endpoints. The vertex of the

angle is a common endpoint to each element and is translated

to the origin. The other two endpoints Pz and P2 are trans-

lated in the same manner. Letting (xi, Yi, zi) and (x2, Y2,

z 2) be the points resultina from the translations of the

endpoints P1 and P2,
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COS e¢ = _XlX 2 + YlY2 + zlz

dld 2

v//X 2 2 2where d I = 1 + Yl + Zl

v_X 2 2 2and d 2 = 2 + Y2 + z2

1 .21

is the desired angle.

To find axial angles the above method is used except

that the vertex is established at one end of an element

and the origin is used with the other endpoint to define

the angle. The desired angle is _.

The angle between two adjacent faces, the dihedral

6, is found using

cos 6

I
+ C C I 1 22

= -AIA 2 +BIB 2 I 2 I

2 2 2// 2 2 2

1 + B1 + C 1 _/A2 + Be + C2

where

B is the desired angle.

AI x + BIY + ClZ + DI = 0 defines the planecontaining

one face and A2X + B2Y + C2Z + D2 = 0 defines the

plane containinq the other face. The negative sign is

used because the obtuse angle is desired.

The A,B, and C for each plane are computed as

a

Yl Zl 1

Y Z l
2 2

y_ Z3 l

1 .23

B

Z 1 1

XI

X2 Z 2 1

X3 Z 3 1
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C =

Xl Y1 1
X2 Y2 1

X3 Y3 1

where (X 1 , Y1, Zl)' (X2' Y2, Z2), and (X3, Y3, Z3) lie in

the plane. In particular the three vertices of each face

are used.

The length of the elements_ are found by using the

general equation:

)2 )2 )2(P - p + (P - P + (P - p
x I x2 Yl Y2 zl z2

1 .24

is the desired length.

To reduce total output, this program takes into

account certain symmetries and outputs only a part of the

total angles and lengths. The rest of the values are the

same as at least one outputed value and can easily be

found using the following symmetries, Figure 1.55.
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N ,1 N,O

v 0,0

Figure 1.55
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FACE ANGLES

For every face angle opening directly towards (or

away from) the point (0,0), there are equal angles opening

towards (or away from) the point (N,O) and (N,N). For

example, the angle (I,I), (0,0), (I,0) with vertex at (0,0)

is equal to the angle (N-I,O), (N,O), (N,I) and the angle

(N,N-I), (N,N), (N-I, N-I). Thus, only the face angles

facing directly towards or away from (0,0) are computed.

If the vertex is to lie at (l,J), the angle will be either

(I + I, J + I), (l,J), (I + I, J) or (I-I, J-l), (l,J),

(l-l,J). Also, only the face angles falling on the right

of or on a line passing through (X I, YI, Z1,) and the mid-

point of the opposite side are computed.

The elements of the structure can be put into one-

to-one correspondence with the lengths and dihedral angles.

The dihedral angle associated with an element is the angle

between the two faces containing the element. For each

element, there are two axial angles, one at each end, but

since the element is a cord of the circle, the two angles
J

are equal and may be considered one. In this case, we have

a one-to-one correspondence between elements and axial

angles. This program will only compute values around elements

parallel to the side opposite (X 1, YI, Z1) and on the right

side of a line through (X I , Y1,Z1) and the midpoint of the

opposite side. All other lengths and angles are symmetric

to one of the lengths and angles computed in this manner.
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The computer program here contained was written

for the IBM 7040/7044 computer, utilizing FORTRAN IV

language. The program may be used for a Tetrahedron,

Octahedron, or Icosahedron, depending upon the coordinates

chosen as input data. The output is given in units based

upon a radius of 1 for the spherical form and therefore,

may be used as a basis for determining large structures.

The example of input data is given in Table 1.6. The

example of output data is given for a six frenuency Icosa-

hedral sphere, and may be read as in Table 1.7. The output

takes advantage of symmetries within the spherical Icosa-

hedron as discussed in the text material. Figure 1.56
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1.8 METHODS 4 & 5

This mathematical and computer model was written for

subdivision of a tetrahedron, octahedron, or icosahedron

circumscribed by a unit sphere. The Icosahedron was chosen

as an example to illustrate the geometry of the model. The

polyhedron is oriented in a three dimensional rectangular

coordinate system so that the vertices of one PPT are:

(xl 'Yl 'zl) = O, v/T-T, 1

(x2,Y2,Z 2 )

--- (0, .850651, .525731)

= 1 O,

(x3 'Y3 ,z

= (.525731, O, .850651)

: ,/T, 1 ,o

where:

= (.850651, .525731, O)

m = l + v/_-
2

with the intersection of the axis x, y, z located at the

origin (0,0,0) of the polyhedron. Figure 1.58.

1 .25
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Z

&

/
X I,YI, Zl

/

X

,Y3, Z3

/

Figure 1.58

Due to the methods in which the three-way grids are generated

only even frequency subdivisions may be used.

Subdivision and Gridding for Method 4

The PPT is subdivided into equal parts so that the

vertices take the form:

z - z 1.26

x I + I N , Yl + I w- N , Zl + I N

where N is the frequency of the structure and I is an interger

such that 0 } I _ N. The values of I are unique for each vertex

and are used to identify each vertex for each side as shown in

Figure 1 .59.
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x3 ,Y3, z3

S2

3 2 I

_\ /, _

XI,YI • Zl

Figure 1.59

X2'Y2 • Z2

Having found the unit division along the principal side of

PPT, the points of subdivision are connected so that a three-

way grid is generated with the lines of the grid perpendicular

to their respective sides. Figure 1 .60

S 2 P2

P_

S3
Sl

P1

Figure 1.60
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Solve the equations for the x & y coordinates ef the inter-

section of PIP2 with P--_4

D = a b
i 1

a b
2 2

X = C I b 1

c2 b 2

D

1 .28

y : a I C 1

a 2 c 2

find the z coordinates

For PIP2 let: (z2-zl) = a 1

(Yz- Y2 ) : bl

zl(Yl-Y2) + Y1(Z2 - z 3) = c

For P3P4 let: (z4 - z3) = a2

(Y3 - Y4) = b2

z3(Y 3 - Y4) + Y3(Z_ - z 3) = c 2

The intersection of P-_P-6with P--_4& F_F 2 are coincident and

need not be found,

All other points of intersection of the three-way grid are

found in like manner and are stored for final translation to

the surface of the circumscribed sphere,

1 .29
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Subdivision and Gridding for Method 5

With the following equations the planes consisting of

the edge of the PPT and the origin (0,0,0)are rotated from

3-space, Figure 1.61.

y,
Y

/

Figure 1.61

x _ = XlX + PlY + VlZ

y : x2x + p2 y + v2z

z _ x3x + u3Y + _3 z

1 .30

Where x, _, _ are direction cosines of the X'-axis, Y_-axis, and

Z'-axis respectively with respect to the old axis and are found by:

JX 2 2 2X1 = i / xl + Yl + zl

y 2 2 2
_I = 1 / xl + Yl + zl

_Z 2 2D1 = 1 / Xl 2 + Yl + Zl

X2' X3; _2' _3;
and 92' _3

are found similarly.
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Due to the method in which the three-way grid is generated

only even frequency subdivisions may be used. The principal

side of the PPT is subdivided into equal arc units by the

following method: Figure 1,62 and 1.63.

FIND: the angle 6 contained within the rotated triangle

consisting of PIP2, and the origin with the vertex located

at the origin.

= Arctan ( Py2 ) r
P2

x

Where r = 1 and is considered constant

l .31

¥

v

TH EN:

Figure 1.62

subdivide the angle _ into N angles

e = _ T

N
where T = Increment l to N

l .32
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Y

P2

P3

X

Figure 1.63

The points of intersection of O--P3 and PIP2 are found:

PIP 2 is Y - Yl = Y2 Yl

- X 1 X2 - X 1

0-_ 3 is y - 0 = Y3 - 0

X - 0 X 3 - 0

1 .33

The equation takes the following form:

PzP2 is x(y 2 - Yz) + Y(Xl - x2) = Yl(Xl - x2) + x (y2 - yl)

let (Y2 - Yl ) = al

(x 2 - Xl) : b I

Yl(Xl - x2) + Xl(Y2 - Yl) = ci

- = 0xy 3 yx 3

= aY._ 2

-X 3 = b 2

0 = C 2

I-1_2



Solve the equations for the point of intersection:

D_ i bbi[
2

X=

C 1 b I

C2 b 2

D
V_ a c

I i

a 2 c
2

1 .34

Rotate the points of intersection along the PPT edge from

2-spaces back to 3-spaces.

X = %1 x" + ply" + Vl z

y = %2 x " + p2y" + _2 z

z = _ x" + _3Y" + _3 z3

where %, _, _, are direction cosines of the X'-axis, Y'-axis,

and Z'-axis with respect to the old axis and are found:

jJ2
%1 = X 1 X I

/xI_I = Yl / I

= Z //X 2
] 1 1

2 2

+ Yl + Zl

2 2

+Yl + z
1

2 2

+ Yl + Zl

% , % ; P2, P ; and _2, _3 are found similarly.
2 3 3

Retain the co-ordinates along the edges Sl, S 2

in Figure 1.64.

and S as shown
3

1 .35
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X3,Y3, Z3

N 3 2 I

1 _" _" = /NX2'Y2'

2

3 2 3

X! ,YI, Z1

Z 2

Figure 1.64

After finding the unit divisions along the principal sides of .

the PPT, the points of subdivison are connected thereby creating

a grid network. Since the units along the principal sides are

not of equal length, the gridding will create "windows" The

centers of these "windows" must be found to establish the

three-way grid on the PPT. Figure 1.65.
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Figure 1.65

The gridding and windows are found by the following

method: From the coordinates along the edlges of S I, S2 and S3,

calculate coordinates of the window by finding the intersection

of PIP2 with P3P4 and PIP2 with PsPG and P3P4 with PsP_ by using

the two point form of the equation of a line in three-space for

the three lines and solve simultaneously for the points of

intersection,
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Find the z coordinate:

For P P let:
1 2

For P P 1 et :
3 4

(Z2-Zl) = a I

(yz-y2) = b I

Zz(yl-y 2) + yz(Z2-Z3) = c 1

(z4-z3) = a 2

(y -y ) = b
3 4 2

z (y3-y) + y (z4-z) = c3 4 3 3 2

The other two vertices of the window are found in a similar

manner. Once the coordinates for the vertices of the window

are determined, its center is found by the following method:

cw = (w + w + w )/3
I 2 3

where: cw = center of the windows

w = the x, y, or z coordinate of the
vertices of the window.

Translation of the Grid for Method 4 & 5

The vertices of the three-way grid are then translated

to the surface of the sphere along a line passing through the

respective vertex and the origin (0,0,0) of the polyhedron by:

X = rx
i 1

d

Yl = rYl

d 1 .37

Z _ = rz
1 1

d
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Where:

and

and

where :

iX 2 2 2d I + Yl + zi

d = distance from origin to P
1

r = the radius of the unit sphere

r = 1

Using the translated coordinates, this program finds the

lengths of the elements of the structure (_), the angle between

pairs of elements (face angle _), the angle between the elements

and a radius from the origin to an endpoint of the element

(axial angle _), and the angle between adjacent faces of the

structure (dihedral angle 8), Figure 1.66
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Figure 1.66

To find the angle between elements the face _ _, we use the

coordinates of their endpoints. The vertex of the angle is a

common endpoint to each element and is translated to the origin.

The other two endpoints PI and P2 are translated in the same

manner. Letting (Xz, Yl, Zl) and (xl, Yl, zl) be the points

resulting from the translations of the endpoints P and P
1 2'
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COS o_ = +z, 1XlX 2 + YlY2 1 2

-- d d
1 2

v_X 2where dl= 1 2 + Yl 2 + Zl

 /xx 2 2= 2 + Y + z
and d 2 2 2 2

1 .38

is the desired angle.

To find axial angles the above method is used except that

the vertex is established at one end of an element and the

origin is used with the other endpoint to define the angle.

The desired angle is _.

The angle between two adjacent faces, the dihedral ), B,

is found using

COS B =
-I AIA2 + BIB2 + CIc21

V/A J'A 2 22 + B 2 + C 2 2 + B + C
1 1 1 2 2 2

1 .39

where

B is the desired angle.

AI X + B1Y + CI Z + D 1 = 0 defines the plane containing one

face and A2X + B2Y + C2Z + D2 = 0 defines the plane containing

the other face. The negative sign is used because the obtuse

angle is desired.

The A, B, and C for each plane are computed as

a

y Z 1
I I

Y2 Z2 1

y Z 1
3 8 1 .40

B _

X Z l
1 1

X Z 1
2 2

X Z 1
3 3
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C

Xl Y1 1

X2 Y2 1

X3 Y3 1

where (Xl, Yz' Zl)' (X2, Y2, Z2), and (X 3, Y3' Z3) lie in

the plane. In particular the three vertices of each face

are used.

The length of the elements are found by using the

general equation:

= p _ p ) + (p _ p ) + (p _ p )2 1.41
Xl X2 Yl V Z Z• "2 1 2

is the desired length.

To reduce total outDut, this program takes into account

certain symmetries and outputs only a part of the total angles

and lengths. The rest of the values are the same as at

least one outputed value and can easily be found using the

following symmetries, Figure 1.67.
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THE COMPUTER PBOGP..a_4 DESCRIBED ON

PAGES 1-163 to 1-184

IS AVAILABLE FROM COSMIC





1.9 Methods 6 & 7

This mathematical and computer model was written for

subdivision of a tetrahedron, octahedron, or icosahedron

circumscribed by a unit sphere. The icosahedron was chosen

as an example to illustrate the geometry of the model.

The polyhedron is oriented in a three dimensional rec-

tangular coordinate system so that the vertices of one

PPT are:

(Xl' Yl' ZI)

(x2, Y2, z2)

(X3' Y3' Z3)

whe re : T

=( o, __g ' 4v_v__)

: (0, .850651 , .525731)

= (,850651, .525731, 0)

= (.525731, 0,.850651)

= 1 + _rg

2
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The intersections of the axis X, Y, Z is located at

the origin (0,0,0)of the polyhedron. Figure 1.68.

(X3,Y3,Z3)

\
\
\y

/

/ \
\
\

X

X2,Y2,Z2 )

Figure 1.68
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A w

C 4

Note: ABC is a

right triangle

Figure 1.69

Subdivision for Method 6

The Line AB is subdivied into parts chosen as equal

are divisions of the central angle of the polyhedron by the

following equation. Figure 1.70.

¢ = 2[Arcsin (J(x2-xl) 2 +(Y2-Yl)2/2)]

2 2 -x 1
x -

J(X2-Xl)2 +(y2-Yl )2 N

Y2-Y l
y =

J(x2-xl)2 +(Y2-Yl )2

Sin

where: 0 i/= 2_

= the central angle of the polyhedron

0 < I<N

(xl, YI) and (x 2, y2) represent any two

points on the PPT edqe

1.46
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(x2 ,v2)
B

(X1,¥1) I
/

/
/

/
/

/
/

-- 8 .._/
/

/
/

/
/

/o,o,o)

Figure 1.70

Subdivision for Method 7

The Line AC is subdivided into parts chose as equal

arc divisions of an angle made up of the triangle AC and

the origin of the polyhedron with the origin (0, O, O) being

the center of the triangle of subdivision. The following

equations are used for this subdivision. Figure 1.71

A: Arcsin [ 2, / ]3 (xl-x2)2 +(Yl-Y2 )2

2 (x2-x I )

x = Sin(NIA)

y =

3 /(x2-x I)2 +(Y2-Yz)2

2 (Y2-Yl)

3 /(X2-Xl)2 +(Y2-Yz )2 Sin ( N

1 .47
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where: z_= the angle between

AO and OC

0 < I<N

(xl,Y 1) and (x2,y2) repre-

sent any two points on the

PPT face bisector.

(X1,Y1) (X2,Y 2)

'_ Le

0

Gridding & Projection for Methods 6 & 7

Figure 1.71

The points of subdivision for methods 6 and 7 are

stored in a matrix and are used in the gridding process for

each respective method. Figure 1.72

Matrix PT(A,B,C)

sphere: A = the type of point

l-on the edge of triangle

2-on bisector of angle

3-on internal points of triangle

4-external points

B = line value and x, y, z values

I-3 represents x, y, z values of line 1

4-6 represents x, y, z values of line 2

7-9 represents x, y, z values of line 3

C = the number of points on the line.
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Once the subdivisions are found, they are used to find

points of divisions on the other two sides of the right

triangle by the following equations. Figures 1.73 & 1.74.

x : (Y1 +Xl [M21]) - ( l/3 -x 3 [M34])

M34 M21

y = x(M21 ) + yl-xz(M2z )

where:M21 =-x2-x I (neg. reciprocal of slope) 1 ,48

Y2-Yl

M34 = y3-y4 (slope)

X3-X 2

X4,Y4)

("_,h) (,,,,v,) (,,_,_'_)

A

Figure 1.73
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and: x : (Y3 +Mix3) - (Yl +M2Xl)

where :

(M 2 - M

y = xM; +Y3 +x3M1

M1 - (--_--2)

M2 = Y2 -Yz

X 2 -X 1

1)

(neg. reciprocal of slope)

(slope)

1 .49

(xa,*a)

( X 2_'Y2)

F

(x,_)

(x,,,1)

I

i i
A

Figure 1.74
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Reflection of points in two-space are found by;

Figure 1.75.

x4 = [(Y3 +Mix3) - (Yl +M2x1) ]

(M 2 -M 1 )
1

Y4 = x4M1 + /3 +x3M1

where M1 = _ 1/M 2

M2 = (Y2 -Yl )

1 .50

(X 2 -X 1 )

and the reflected points are:

x = x I + 2 (x_ - x1)

Y = Yl + 2 (Y4 - Yl )

(X1 ,Y1 )

(X2,Y 2 )

'x4,Y.)

(X3,Y 3)

(X,Y)

Figure 1.75

Rotations of points in two-space are found by:

Figure 1.76.

X = (X2-Xl) Cos @ - (y2-yz) Sin _ +x I

y = (x2-xl) Sin _ + (y2-Yl) COS _ +Yl

1 .51
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in matrix form

(x,y) Cos @ - Sin

Sin _ Cos

(XI,YI) _ (X, Y)

I

Figure 1.76

The points for the internal gridding are found by

the equations: Figure 1.77.

x = (B2C I - BIC 2)

(A2B 1 - A1B 2)

l .52
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where :

y = (A2C I AIC 2)

(AIB 2 - BIA2)

AI= Y2 Yl

BI= x I - x 2

CI= Xl (Yl - Y2 )

A2= Y4 - y
3

B2= x3 - x4

C2= x3 (Y3 -

+ Yl (x2 - Xl)

Y4) + Y3 (x4 - x3)

(x,,Y,)

A

Figure 1,77

Through rotations and reflections (equations 1,50, 1.51)

of the basic unit, the entire PPT three-way grid is found.

Figure 1.78
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, j

p_J

J_
J

A

"_JA

J
J

B

Figure 1.78

The external points of the PPT are found by equation

1.52 and are rotated into their respective plane by equation

1.44 where: the angles of rotation are found by equation

1.43. The external points are rotated by equation 1.51

to their respective positions.

All points of the three-way grid are then rotated into

three-space using equation 1,45

where : T z = 211 T z

Ty = 211 - Ty

T = 211-T
X X

are the angles of rotation.

The origin is then retranslated to its original

position by:

1 .53
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where :

s

x = x+T
X

' Tyy : y +

z' = z + T z

(Tx, Ty, T z)

the coordinates to which the origin was

originally translated to.

All points of the three,way grid are then projected

to the surface of the sphere by: Figure 1.79

X
X J =

Dis

Y
y' -

Dis

Z
Z t =

Dis

where: Dis = j(x) 2 + (y)2 + (z)2

1 .54

1 .54

/
!

!

Figure 1.79

1-199



For the PPT, the number of:

edges = 3_(3_ - 2)

8

half edges = 3_

2

faces = 3_(_ - 2)

4

half faces = 3_

vertices = 3_(_ + 2)

+ 1

8

where:_ = frequency and must be even

For the total spherical form, the number of:

2
E_

Edges = 3
4

2

Faces = E_

2

Vertices = E_
4

+ 2

where: E = no. of edges in polyhedral unit.

Using the coordinates, the lengths of the elements of

the structure (_), the angle between pairs of elements

(face angle _), the angle between the elements and a radius

from the origin to an endpoint of the element (axial angle _),

and the angle between adjacent faces of the structure

(dihedral angle 8), are calculated. Figure 1.80

1 .55
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\

\

Figure 1.80

To find the angle between elements, the face _ _, we use

the coordinates of their endpoints. The vertex of the angle is

a common endpoint to each element and is translated to the

origin. The other two endpoints, PI and P2 are translated

in the same manner. Letting (x l, Yl, Zz) and (x 2, Y2' z2)

be the points resulting from the translations of the end-

points P1 and P2'

COS o_ =

where d =
1

xlx2 + YlY2 + ziz2

did 2

_Xl 2 + yl 2 + ZI2 1 .57
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and d2 = v/x2 2 + Y2 2 + Z2 2

is the desired angle.

To find axial angles, the above method is used except

that the vertex is established at one end of an element and

the origin is used with the other endpoint to define the

angle. The desired angle is _.

The angle between two adjacent faces, the dihedral_ B,

cos 8 =

is found using

where

-IA A2 + BIB 2 + CIC21

2+ C222+ C12 J A22+ B2AI2+ B I

l .58

8 is the desired angle.

AI x + BIy + CIZ + D1 = 0 defines the plane containing

one face and

A2X + B2Y + C2Z + D2 = 0 defines the plane containing

the other face.

The negative sign is used because the obtuse angle is desired.

The A, B, and C for each plane are computed as

A

Y Z l
1 I

Y2 Z2 1

Y_ Z 3 1

B

X l Z I 1

X2 Z2 1

X3 Z 3 1

1 .59
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C

X Y 1
I 1

X Y l
2 2

X Y l
3 3

where (X , Y , Z ), (X , Y , Z ), and (X , Y , Z ) lie in
1 1 1 2 2 2 3 3 3

the plane. In particular, the three vertices of each face

are used.

The length of the elements _ are found by using the

general equation:

/(p _ p )2 + (p _ p )2 + (p _ p
xl x2 Y2 Y2 z 3 z 3

is the desired length

)2

1 .60

At the time of publication, the computer programs for

these methods had not been completed and therefore, have not

been included in this report.
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